ROUND I: Arithmetic - order of operations and evaluation of algebraic expressions

NO CALCULATOR USE

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Simplify: $-4\left(5+12 \cdot \frac{1}{2}\right)+2+7+72+36$.
2. If $x \# y=x-x y$ and $x \# \# y=x y+y$, evaluate $[(2 \# 3) \#(6 \# \# 1)] \# \# 2$.
3. Evaluate to an integer or reduced fraction $1-\frac{1}{2-\frac{1}{3-\frac{2 x-1}{2 x+1}}}$ for $\chi=1$.

ANSWERIS

1. (1 pt) \qquad
2. (2 pts) \qquad
3. (3 pts) \qquad
Assabet Valley, Bartlett, Leicester

ROUND II: Algebra 1-open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Multiply to one simplified polynomial: $(x+1)\left(x^{3}-x^{2}+x-1\right)$.
2. Find the ordered pair which satisfies $y=-2 x+5$ but does not satisfy $\frac{y+1}{x-3}=-2$
3. A math teacher / farmer bought some pigs for $\$ 180$. If each pig had cost a dollar more, he would have obtained 2 fewer pigs for the same money. How many pigs did he buy?

ANSWERS

1. (1 pt)
2. (2 pts) (,)
3. (3 pts)

Notre Dame, St. John's, Westboro

ROUND III : Set theory \bar{A} denotes the complement of set A

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Sets A, B, and C include points w, x, y, and z as shown.

Which points are in $(A \cap B) \cap \bar{C}$?

hown		C	
	B		
A 	'y	iz	
			-w

2. $\mathrm{J}=$ the set of integers
$\mathrm{A}=\{x \in J: 1 \leq x \leq 7\}$
$\mathrm{B}=\{x \in J: x=2 n, 0 \leq x \leq 5, n \in J\}$
Specify $A \cap B$ by a list.
3. Al, Barney, and Chris each took the samel00 item true-false test. Al had 70\% of the items answered correctly. Barney had 78%, and Chris had 82% correctly answered. All of the items were answered correctly by at least one of the three. Al and Barney togerther answered 92% of the items correctly. Barney and Chris together answered 94% correctly. Al and Chris together answered 90% correctly. How many items were common correct answers for all 3 ?

ANSWERS

1. (1 pt)
2. $(2 \mathrm{pts})\{$
3. (3 pts)

Doherty, Quaboag, Worcester Academy

ROUND [V: Measurement - perimeter, area, volume

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. The sides of a triangle have lengths in the ratio of 3:5:7 and the triangle has a perimeter of 90 cm . What is the length of the longest side? Include units.
2. A cubic foot of a certain material weighs 4 pounds. How much will 216 cubic inches of this material weigh, in pounds?
3. Find the area of the shaded region in terms of π.

Do not approximate π. The dots are circle centers.

ANSWER.S

1. (1 pt) \qquad
2. (2 pts) \qquad
3. (3 pts) \qquad
Millbury, Shrewsbury, Tantasqua

ROUND V: Polynomial equations

NO CALCULATOR USE

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM. If complex numbers occur in your answers, express them in the form $a+b i$ (but if $\mathrm{b}=0$, omit the $b i$ term).

1. For what value of k will the equation $5 x^{2}+8 x+k=0$ have a double root?
2. Solve: $\left(x^{2}+1\right)^{2}+2\left(x^{2}+1\right)=3$.
3. Solve: $2 i x^{2}-2 x-5 i=0$.

ANSWERS

1. (1 pt) \qquad
2. (2 pts) \qquad
3. (3 pts)

Algonquin, Leicester, Notre Dame

TEAM R.OUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET

1. Evaluate: $\left(\frac{2}{3}+\frac{3}{4}+\frac{1}{2}\right) \div\left(\frac{7}{8}-\frac{5}{6}\right)$.
2. If $2 @)=3 \&$ and $5 @+\&=34$, find the value of $7 @-2 \&$.
3. Giver: $\mathrm{U}=$ \{whole numbers 20 through 40 , inclusive $\}$
$\mathrm{A}=\{$ odd numbers $\}, \mathrm{B}=\{$ even numbers $\}, \mathrm{C}=\{$ multiples of 3$\}$,
$\mathrm{D}=\{$ multiples of 5$\}$ and sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are all subsets of U .
Specify $[(C \cap D) \cup(\overline{A \cup B})] \cup(\bar{A} \cap D)$ by listing its elements.
4. If $\frac{A B}{B C}=\frac{3}{5}$ and $\frac{A E}{E D}=\frac{4}{9}$, find the ratio area $\triangle A B E$
area $\triangle A C D$

5 If the arithmetic mean of two numbers is 6 and their geometric mean is 10 and an equation with the unspecified two numbers as roots is $x^{2}+B x+C=0$, find B and C .
6. In a set of three races, a runner earns 5 points for a win, 3 points for second place, and 1 point for third; no ties allowed. At least how many points must one earn in the three races to be sure of earning more points than any other runner?
7. Find all values of x which satisfy $\frac{2}{x}+\frac{x}{2}=\frac{3}{x}+\frac{x}{3}$.
8. Adam takes 2 hours to do a job. Bob takes 3 hours. They worked together for a time and then Bob finished the job by working the same number of hours alone as he worked with Adam. How many hours did Bob work alone?
9. Solve for $(\mathrm{p}+\mathrm{q})$ in terms of r and s . Assume $\mathrm{r}+\mathrm{s} \neq 0$.

$$
r p+s q=r^{2}+s^{2} \quad \text { and } \quad s p+r q=2 r s
$$

Bancroft, Bromfield, Burncoat, Hudson, Leicester, South, Worcester Academy

	October 10, 2001	
ROUND I	1. 1 pt	-13
	2. 2 pts	50
	3.3 pts	$\frac{5}{13}$

ROUND II

1. 1 pt $x^{4}-1$ ala 1
2. 2 uts $(3,-1)$
3. 3 ants 20

ROUND III

1. $1 \mathrm{pt} \quad \mathrm{y}$
sets
2. 2 outs $\{2,4\}$
3. 3 orts 54

ROUND IV 1. 1 pt $42 \mathrm{~cm} \quad$| need |
| :---: |
| units | meas

2. $2 n+s \frac{1}{2}$ or .5 pound may omit
3. 3 hts 169π

ROUND V I. I pt $3 \frac{1}{5}$ or $\frac{16}{5}$ or 3.2 poly eq
2. ? pts $\chi=0,2 i,-2 i \quad \pm 0 K$ may omit \ddagger
3. $2 \operatorname{rots} x=\frac{3}{2}-\frac{1}{2} i,-\frac{3}{2}-\frac{1}{2} i$ $1.5, .5 i, \frac{i}{2}$ etc. OK

TEAM ROUND 2 pts each

1. 52
2. 34
3. $\{20,30,40\}$ any order ok
4. $\frac{3}{26}$ or $3: 26$
5. $B=-12 \quad C=100$
6. 13
7. $\sqrt{6},-\sqrt{6} \begin{gathered} \pm \sqrt{6} \\ 0 \mathrm{k}\end{gathered}$
8. $\frac{6}{7} \underset{\substack{\uparrow \\ \text { may omit }}}{\text { hour }} 0 . \overline{857142}$
9. $r+s$

Octob

$$
\text { 1. } \begin{aligned}
& -4(5+6) \div 2+7+2 \\
= & -\frac{4(11)}{2}+9=-2(11)+9=-22+9=-13
\end{aligned}
$$

2. $[(-4) \# 7] \# \# 2=24 \# \# 2=48+2=50$
3.

$$
\begin{aligned}
& 1-\frac{1}{2-\frac{1}{3-\frac{1}{3}}}=1-\frac{1}{2-\frac{1}{\frac{8}{3}}}=1-\frac{1}{2-\frac{3}{8}} \\
& =1-\frac{1}{\frac{13}{8}}=1-\frac{8}{13}=\frac{5}{13}
\end{aligned}
$$

Round II

$$
\text { 1. } x^{4}-x^{3}+x^{2}-x+x^{3}-x^{2}+x-1=x^{4}-1
$$

2. For $x \neq 3$, the second equation becomes $y+1=-2 x+6$, or $y=-2 x+5$, the first equation. In this, when $x=3, y=-1$. Thus $(3,-1)$ fits the first equation, but not the second because of $\frac{0}{0}$.
3. Try integers with product 180 or:
$p=\#$ pigs,$c=$ cost each,$p c=180$ and $(p-2)(c+1)=180$ $\therefore p c=p c-2 c+p-2$ a $2 c=p-2 \cdot \operatorname{and} c=\frac{p-2}{2}$

$$
p<=180=\frac{p^{2}-2 p}{2} \Rightarrow 0=p^{2}-2 p-360
$$

$$
(p-20)(p+18)=0 \Rightarrow p=20
$$

ROUND III
1 ArB harp pts y and $z\}$ There irte.saction \bar{C} has pt's x, y, and $w\}$ has only y
2.

$$
\left.\begin{array}{l}
A=\{1,2,3,4,5,6,7\} \\
B=\{0,2,4\} \text { even }
\end{array}\right\} \text { Anis }=\{2,4\}
$$

3.

$$
\begin{gathered}
70+78-(t+x)=92 \Rightarrow t+x=56 \\
78+72-(v+x)=94 \Rightarrow v+x=66 \\
70+82-(u+x)=90 \Rightarrow u+x=62 \\
t+u+v+3 x=184 \\
70+78+82-(t+u+v+2 x)=100 \\
t+u+v+2 x=130 \\
x=54
\end{gathered}
$$

ROUND IV
1.

$$
\begin{aligned}
& 3 x+5 x+7 x=90 \\
& \quad 15 x=90 \text { and } x=6 \\
& \text { congest side }=7 x=42 \mathrm{~cm}
\end{aligned}
$$

2. $\quad 1 \mathrm{ft}^{3}=(12 \mathrm{in})^{3}=1728 \mathrm{in}^{3}$

Then $\frac{x}{4 \text { pounds }}=\frac{216}{1728} \quad\left(=\frac{1}{8}\right)$

$$
x=\frac{1}{2} \text { pound }
$$

3. By fythag the, hypotenuse $=26$

$$
\operatorname{Rad}_{11}=5,12,13
$$

Shaded ares $=\frac{1}{2}(25 \pi+144 \pi+169 \pi)=16.3 \pi$
ROUND I

$$
\text { 1. Make } b^{2}-4 a c=0 \text {. }
$$

$$
64-20 k=0 \Rightarrow k=\frac{64}{20}=\frac{16}{5}
$$

2. $x^{4}+2 x^{2}+1+2 x^{2}+2-3=0$

$$
\begin{aligned}
& x^{4}+4 x^{2}=0 \\
& x^{2}\left(x^{2}+4\right)=0 \Rightarrow x=0, x= \pm 2 i
\end{aligned}
$$

3. Multiply both sides of the given equation by $-i$ to get

$$
2 x^{2}+2 i x-5=0
$$

Then $x=\frac{-2 i \pm \sqrt{-4+40}}{4}=\frac{-2 i \pm 2}{4}$
Simplified,

$$
x=\frac{3-i}{2} a \frac{-3-i}{2}
$$

TEAM ROLAND

1. $\left(\frac{2}{3}+\frac{3}{4} \cdot \frac{1}{2}\right) \div\left(\frac{21-24}{24}\right)=\left(\frac{4+a}{6}\right)\left(\frac{4}{1}\right)=0 \ldots$
2. Rearrange $2 a t-3 \&=0$
and add $\begin{array}{r}5 \varepsilon+8=34 \\ 7 @-2 \&=34\end{array}$
Alt. Solve systern; $(\bar{C},=6$ and $8=4$

Oct 10,2001 WOCGMAL Varsity bRIEF SOlutions cont

TEAM ROUND cont

4 Ratio of aron of Δs with same heights

$$
\begin{aligned}
& =\text { rate: at lases. let } x \triangle A B E=a^{-c e c} 0^{\circ} \angle A A E E \\
& \frac{x \triangle A B E}{x \triangle A C \hat{D}}=\frac{x \angle A B E}{x \triangle A C E} \cdot \frac{\alpha \triangle A C L}{x \triangle M C i}=\frac{A B}{A C} \frac{A E}{2 C}=\frac{3}{8} \frac{4}{13}=\frac{3}{26}
\end{aligned}
$$

5 Call the remiss u and v
Then $\frac{u+v}{2}=6 \Rightarrow u+v=1$?
ard $\frac{L_{1}}{10}=\frac{\underline{10}}{v} \Rightarrow u v=10 x$
Equation $\quad(x-u)(x-v)=0$

$$
\left.\begin{array}{l}
x^{2}-(u+w) x+4 x=0 \\
x^{2}-12 x+100=0 \\
x^{2}+B x+c=0
\end{array}\right\}
$$

$$
B=-12
$$

$$
c=100
$$

6 With forts of $5+5+3=13$, the must that un, eric wise (an got 1 , $3+3+y-11$ With its of $3+3+5=11$, soryeotie else could also get $1 /$ pot footer $5+5+1$ An.

$$
\begin{array}{r}
\quad \frac{2}{\bar{y}} \frac{\div}{2}-x+\frac{2}{3} \\
\quad \frac{x}{1} \frac{x}{3} \frac{3}{x}-\frac{2}{x} \\
\quad-\frac{1}{6}-\frac{1}{x} \rightarrow x^{2}-1 \quad 11 x==-\sqrt{6}
\end{array}
$$

8. Let totriic together , fore
tire -ir i ch to fran

$$
\begin{gathered}
\underbrace{\frac{t}{2}}_{\text {togeth }}+\frac{t}{3}+\frac{\frac{t}{3}}{B_{c t i}}=1 \\
3 t+4 t=6 \\
+\frac{5}{3}=6 \text { hour }
\end{gathered}
$$

9 Add the given equations

$$
\begin{aligned}
\underline{\imath} \cdots+\cdots+i q & =r^{2}+2 r+5^{2} \\
(i \cdot) & (r+5)^{2} \\
(1+5)(r+4) & =(r+5)^{2} \\
0+q & =r+5
\end{aligned}
$$

$$
\begin{aligned}
& 3 C \cap D=\{3)\} \quad \operatorname{man}+3 \text { and } 5 \\
& A L E=u \text {, si } \overline{A L B}=4
\end{aligned}
$$

$$
\begin{aligned}
& {[\{30, \cup \not \subset] \cup\{30,36,46\}=\{3,3,40\}}
\end{aligned}
$$

